چکیده
برای پیشبینی سری زمانی ابتدا باید مدل مناسبی از آن ساخته شود. تعیین ابعاد و تخمین پارامترهای مناسب برای مدل ARMA سری زمانی، چالشی است که علاوه بر روشهای متداول آماری، از طریق محاسبات هوشمند نیز به آن توجه شده است. در این مقاله استفاده از الگوریتم ژنتیک برای تخمین پارامترهای مدل ARMA و قواعد کشفی برای تعیین ابعاد مدل ارائه میشود. قواعد کشفی براساس ویژگیهای سری زمانی استخراج میشوند. داده ها بهروش پنجرۀ لغزان در پیشبینی بهکار میروند. مدل بر اساس معیار اطلاعاتی بیزین و پیشبینی بر اساس دو معیار مجذور متوسط مربعات خطا و متوسط قدر مطلق درصد خطا ارزیابی میشود. روش ارائهشده روی هشت سری زمانی با ویژگیهای مختلف بهکار رفته و نتایج آن با نتایج روش آماری مقایسه شده است. نتایج نشان می دهد در تمام موارد، روش ارائه شده همسان یا بهتر از روش کلاسیک عمل میکند.
نویسندگان: محمد رضا اصغری اسکویی ، محمد قاسم زاده
جهت دریافت فایل pdf کامل مقاله اینجا کلیک فرمائید.
منبع: پژوهشنامه پردازش و مدیریت اطلاعات